STEIGERUNG DER SCHWINGFESTIGKEIT VON ALUMINIUMGUSS BEI ERHÖHTEN EINSATZTEMPERATUREN "ALUWARMSTRAHL"

Daniel Hofferberth, M.Eng. Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF www.lbf.fraunhofer.de

Dr.-Ing. Frank Schweizer Fraunhofer-Institut für Werkstoffmechanik IWM www.iwm.fraunhofer.de

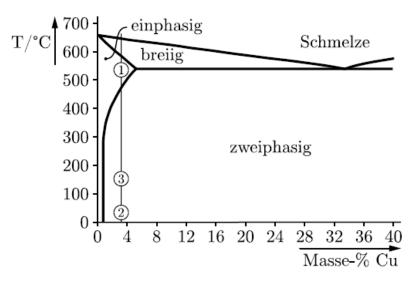
Weinerzhagen, 18.09.2018

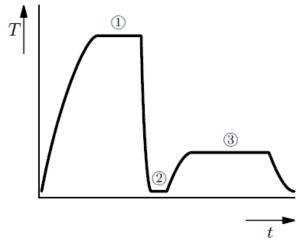
Gliederung

- Ausgangssituation
- Stand der Technik (Auszug)
- wissenschaftliche Zielsetzung
- geplante Arbeitspakete
- **Budget- und Zeitplanung**
- Projektbegleitender Ausschuss (PbA)

Ausgangssituation

- Stetig steigende Anforderungen an Bauteile und Werkstoffe
 - Maßnahmen zur Steigerung der Schwingfestigkeit:
 - Konstruktive Maßnahmen
 - Gezielte Wärmebehandlung
 - Randschichtnachbehandlung
- Erschließung neuer Einsatzmöglichkeiten für gegossene Al-Legierungen
 - mit hohen zyklischen Festigkeitsanforderungen
 - bei erhöhten Temperaturen durch eine Randschichtnachbehandlung unter Vorwärmung





Stand der Technik (Auszug)

- Vorteile des Kugelstrahlens
 - Steigerung der Schwingfestigkeit im Bereich der Langzeitfestigkeit
 - Positiver Effekt sowohl für konstante als auch variable Amplituden
- Maßgeblich für die Schwingfestigkeitssteigerung sind die durch den Kugelstrahlprozess eingebrachten (Druck-)Eigenspannungen verantwortlich.
- Steigerung der Schwingfestigkeit durch gezielte Wärmebehandlung des Werkstoffes.

Stand der Technik (Ausscheidungshärtung / Auszug)

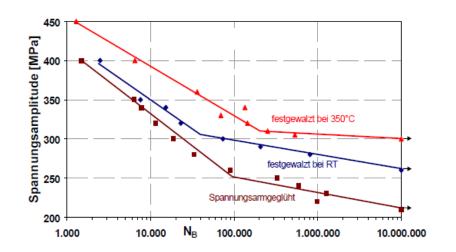
a: Phasendiagramm für das Legierungssystem Al-Cu

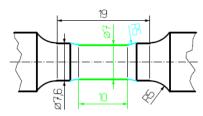
b: Temperatur-Zeit-Verlauf zur Ausscheidungshärtung

- 1. Lösungsglühen
- 2. Abschrecken
- 3. Warmauslagern (Altern)

Quelle:

Rösler, J.; Harders, H., Bäker, M.: Mechanisches Verhalten der Werkstoffe


2., durchgesehene und erweitere Auflage



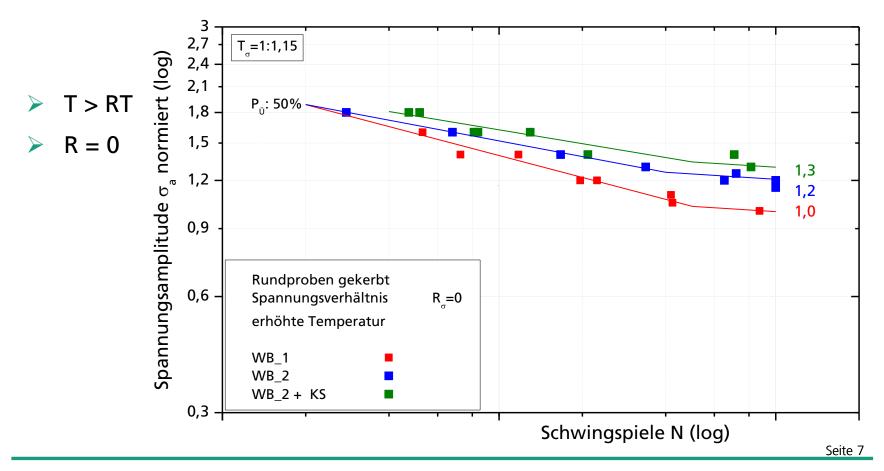
Einflussgrößen am Beispiel des Ck45

- Positiver Einfluss des Festwalzens auf die Schwingfestigkeit beim Ck45
- Weitere Steigerung der Schwingfestigkeit durch Festwalzen unter 350°C
- Steigerungspotential ist abhängig von der Prozesstemperatur

Detaildarstellung der Probengeometrie

Schwingfestigkeitsergebnisse C45 unter Wechselbelastung (R_{σ} = -1) (vergütet bei 530°C)

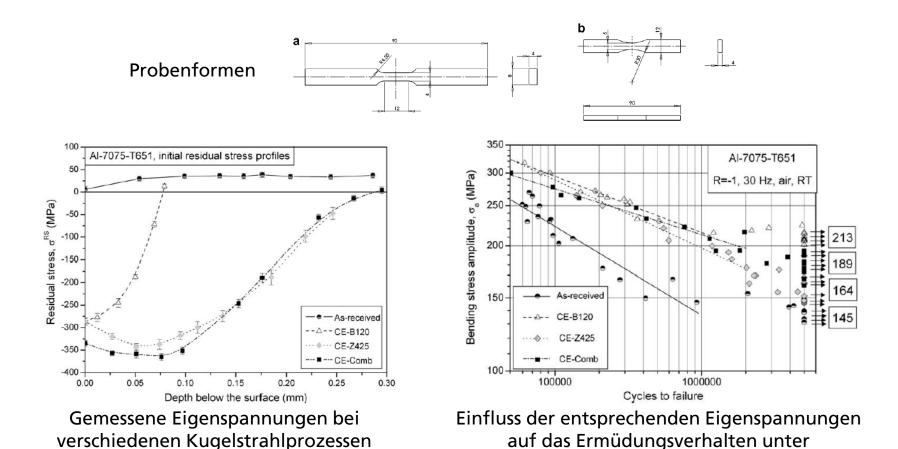
Quelle:


Nikitin, I. et al: Effect of high temperature deep rolling on the fatigue behaviour of metallic Materials (2006) Seite 6

Einflussgrößen am Beispiel einer Al-Legierung

Steigerung der Schwingfestigkeit im Bereich der Zeit- und Langzeitfestigkeit durch geeignete Wärme- und Randschichtnachbehandlung

Einflussgrößen am Beispiel einer Al-Legierung


Steigerung der Schwingfestigkeit im Bereich der Zeit- und Langzeitfestigkeit durch geeignete Wärme- und Randschichtnachbehandlung

> Ergebnisse der Eigenspannungsmessungen an einer gekerbten Rundprobe vom LBF, vorund nach der

Belastung (Schwingfestigkeitsversuch: 180°C, 50 000 Schwingspiele):

	Phi = 0° (axial)		Phi = 90° (tangential)	
	Normalspannung / MPa	Schubspannung / MPa	Normalspannung / MPa	Schubspannung / MPa
vor der Belastung	-298 +/- 13	-6 +/- 3	-215 +/- 10	-1 +/- 2
nach der Belastung	-87 +/- 5	9 +/- 1	-44 +/- 2	-4 +/- 0
nach der Belastung (Reproduzierbarkeit)	-80 +/- 4	-4 +/- 1	-49 +/- 2	-1 +/- 0

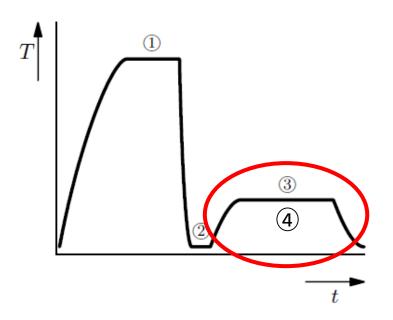
Einflussgrößen am Beispiel einer Al-Legierung

Quelle:

Benedetti, M. et al.: Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation. International Journal of Fatigue 31 (2009) 1225–1236

Seite 9

Biegebeanspruchung


Wissenschaftliche Zielsetzung des Vorhabens

- Entwicklung eines Verfahrens für eine kombinierte Wärme- und Kugelstrahlbehandlung für Al-Legierungen.
 - Kombinierter Strahl- und Wärmebehandlungsprozess und dessen Einfluss auf die zyklische Festigkeit
 - Steigerung der Schwingfestigkeit im Bereich der Zeit- und Langzeitfestigkeit
- Erweiterung des Kenntnisstandes zum Strahlprozess und zur zyklischen Beanspruchbarkeit von Al-Legierungen bei erhöhten Temperaturen
 - Zu den Mechanismen der Schwingfestigkeitssteigerung unter erhöhter Temperatur
 - Zur Robustheit und Stabilität der ausgebildeten Eigenspannungsfelder unter Temperatur
- Integration des erweiterten Kenntnisstandes in die numerische Simulation und Transfer in die Bemessungspraxis

Wissenschaftliche Zielsetzung des Vorhabens

Temperatur-Zeit-Verlauf zur Ausscheidungshärtung

- 1. Lösungsglühen
- 2. Abschrecken
- 3. Warmauslagern (Altern)
- 4. Kugelstrahlen unter Ausnutzung der Prozesswärme

Quelle:

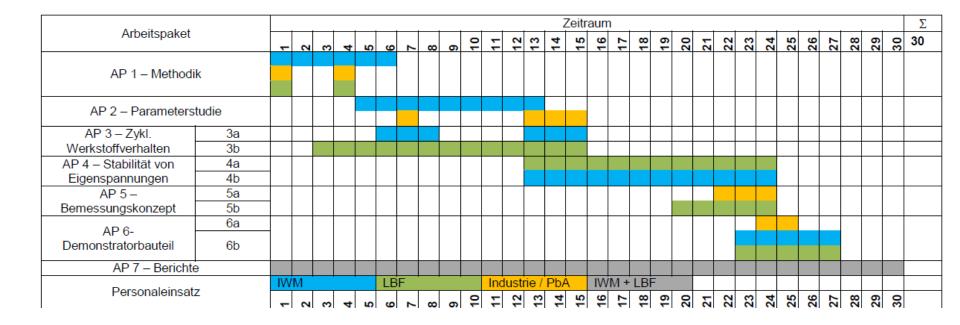
Rösler, J.; Harders, H., Bäker, M.: Mechanisches Verhalten der Werkstoffe 2., durchgesehene und erweitere Auflage

Geplante Arbeitspakete

- AP 1: Erarbeitung einer Methodik zum Warmstrahlen
 - Adaption industrieller Kugelstrahlanlagen für das Warmstrahlen
 - Definition grundlegender Prozessschritte
 - Identifikation und Eingrenzung relevanter Prozessparameter
- AP 2: Parameterstudie und Werkstoffcharakterisierung
 - Durchführung von Laborversuchen an Rundproben
 - Charakterisierung der Oberfläche (Kontur- und Rauheit) als Funktion der Strahlparameter beim Kugelstrahlen
 - Wechselwirkung zwischen Versetzungen und Gefügeentwicklung zu definierten, unterschiedlichen Prozesszeitpunkten

Geplante Arbeitspakete

- AP 3: Zyklisches Werkstoffverhalten
 - Ermittlung des zyklischen Werkstoffverhaltens als Funktion der eingestellten Gefüge- und Eigenspannungszustände
 - Korrelation der zyklischen Spannungs-Dehnungs-Kurven mit den Prozessparametern
- AP 4: Stabilitätsuntersuchungen und Messung der Eigenspannungen
 - Untersuchung des Eigenspannungs- und Gefügezustandes zyklisch beanspruchter Proben
 - Korrelation der Ergebnisse mit den Verfahrensparametern



Geplante Arbeitspakete

- AP 5: Erstellung eines Bauteil-Bemessungskonzeptes
 - Auswahl des Demonstratorbauteils
 - Aufbereitung der Ergebnisse für die Integration in ein Bemessungskonzept
 - Darstellung der Potentiale des kombinierten Verfahrens
- AP 6: Vorbemessung und Abguss des Demonstratorbauteils
 - Erarbeitung und Herstellung eines Demonstratorbauteils
 - Vorbemessung mittels des Bauteil-Bemessungskonzeptes
 - Validierung im Schwingfestigkeitsversuch
- AP 7: Abschlussbericht und Dokumentation

Zeit-Planung

Weinerzhagen, 18.09.2018

Budget-Planung

- Dauer des Vorhabens: 2,5 Jahre
- Insg. 2 Fraunhofer-Institute beteiligt
 - Fraunhofer LBF
 - Fraunhofer IWM
- geplantes Projektbudget je FhI: ca. 225 k€
 - → Gesamtbudget Fhl's: ca. 450 k€

Aktuelle Übersicht des projektbegleitenden Ausschusses

Firma	KMU
OSK Kiefer	ja
TURAL GmbH	ja
RömerCad	ja
Ingenieurbüro Schellhaas	ja
Instal Engineering	ja
Firma Jordan	ja
WVG alu-tec GmbH	ja
Gießerei Schüle	ja
RÖSLER Oberflächentechnik GmbH	nein
KSM Castings	nein
Arconic Forgings & Extrusions	nein
Curtis Wright Metal Improvement	nein
BorgWarner Turbo Systems Engineering GmbH	nein
CP Autosport GmbH	nein
Rheinfelden Alloys	nein

Die vAW's der obig genannten Unternehmen liegen vor

Vielen Dank für Ihre Aufmerksamkeit!

Für Fragen stehen wir Ihnen gerne zur Verfügung!

